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Abstract

In this work we present a framework of automatic non-photorealistic image processing techniques that create
simplified stylistic illustrations from color images, videos and 3D renderings. To smooth low-contrast regions while
preserving edges, we present a new fast separated implementation of the bilateral filter. Our approach works by
filtering in direction of the gradient and then filtering the intermediate result in perpendicular direction. When
applied iteratively, our approach does not suffer from horizontal or vertical artifacts and creates smooth output at
curved boundaries. To extract salient important edges we first apply a one-dimensional difference-of-Gaussians
filter in direction of the gradient and then apply smoothing along a flow field which we derive from the smoothed
structure tensor. Our method creates smooth coherent output for line and curve segments.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Generation
I.3.3 [Computer Graphics]: Display algorithms

Figure 1: Examples of abstracted images created using our framework.

1 Introduction

Photorealistic visualizations used in 3D applications designed
for typical desktops usually show high visual information
density. In this paper we present non-photorealistic image
processing techniques to distill the perceptually important
information and optimize the content for the limited screen
space of small displays. Our method (Figure 2) extends the
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approach of Winnemöller et al. [WOG06] to use iterated bi-
lateral filtering for abstraction and difference-of-Gaussians
(DoG) for edge extraction. We present enhancements to these
techniques to improve the quality of the output by adapting
them to the local orientation of the input. Our method is
simple and efficient to implement on CPU and GPU. Imple-
mented on the GPU our approach enables real-time process-
ing of video and application as a post-processing effect for
real-time 3D renderings.

© The Eurographics Association 2008.

mailto:kyprianidis|doellner@hpi.uni-potsdam.de


Jan Eric Kyprianidis and Jürgen Döllner / Image Abstraction by Structure Adaptive Filtering

Separated Flow-based DoG Filter

Separated Orientation-aligned Bilateral Filter

Bilateral Filter
in Gradient
Direction

Bilateral Filter
in Tangent
Direction

Color
Quantization

Input Output

Local
Orientation
Estimation

DoG Filter
in Gradient
Direction

Smooting along 
Flow Field and 
Thresholding

n
e-iterations

n
a-iterations

Figure 2: Overview of our abstraction framework.

To represent local orientation we construct a smooth tensor
field. From the eigenvectors of this tensor field we derive a
vector field that has similar characteristics as the edge tangent
flow (ETF) of Kang et al. [KLC07], but its computation is
much less expensive. Besides gradient calculation, only linear
separable smoothing with a box or Gaussian filter is neces-
sary. In contrast to that, ETF construction requires several
iterations of a nonlinear filter with a large filter kernel.

The xy-separated bilateral filter [PvV05] used by Win-
nemöller et al. suffers from horizontal and vertical artifacts.
These artifacts appear in particular when the filter is applied
iteratively (Figure 6(c)). Pham presents in [Pha06] a uv-
separated bilateral filter implementation that is aligned along
the flow curves of the structure tensor. It gives good results
even under severe noise conditions, but is not optimal when
used with color quantization (Figure 6(d)). Our approach,
which filters in direction perpendicular to the gradient instead
of filtering along the flow curve, creates smooth output at
curved boundaries (Figure 6(b)) and works well with color
quantization.

DoG edges look frayed and don’t reassemble straight line
and curve segments very well (Figure 9). To work around this
limitation Kang et al. [KLC07] recently introduced the con-

cept of flow-based difference-of-Gaussians (FDoG) which,
compared to DoG edges, create more coherent lines. They
replaced the DoG filter by a flow-guided anisotropic filter
kernel whose shape is defined by the ETF. In this work we
show that comparable high-quality results can be achieved
by a separated implementation with corresponding reduced
computational complexity. As first pass, we apply a one-
dimensional DoG filter in gradient direction followed by a
second pass that applies smoothing along the flow curves of
the vector field induced by the smoothed structure tensor. To
integrate the flow curves, we present a straightforward-to-
implement method which, compared to Euler integration and
line integral convolution [CL93], produces more uniformly
distributed sampling positions.

2 Related Work

The structure tensor appears in the corner detector of Har-
ris and Stephens [HS88]. Kass and Witkin constructed in
[KW87] a vector field to estimate local orientation which
can be interpreted as a specialization of the structure tensor.
Bigün et al. show in [BGW91] that the structure tensor can
be seen as an approximation to fitting a plane to the Fourier
transform of an n-dimensional structure. Van Vliet and Ver-
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beek discuss in [vVV95] the connection between the structure
tensor and double angle representation.

The bilateral filter is a nonlinear operation that smooths
images while preserving edges [AW95,TM98,PKTD07]. It is
a powerful tool, but computationally very expensive. A brute
force implementation can calculate an output pixel in O.r2/
time, where r denotes the filter radius. A faster calculation
scheme is presented in [Wei06], but is limited to box spatial
kernels and targeted toward vectorization on multiple CPUs.
Another fast acceleration technique is presented in [PD06].
They express the bilateral filter as linear convolutions fol-
lowed by two nonlinearities in a higher-dimensional space
where the signal intensity is added to the original domain
dimensions. Applications of this technique are presented
in [CPD07]. Barash and Comaniciu show in [BC04] that
there is a close connection between anisotropic nonlinear
diffusion filters and iterated bilateral filters. This motivated
Winnemöller et al. [WOG06] to apply iterated bilateral fil-
tering for abstraction. For performance reasons, they were
forced to use the xy-separated bilateral filter [PvV05].

DeCarlo and Santella [DS02, SD04] use eye-tracking data
to guide image abstraction based on mean-shift segmenta-
tion [CM02] at different scales. Edge extraction is based
on the Canny edge detector [Can86]. Other authors, e.g.,
Wang et al. [WXSC04] extended these ideas to video. Hays
et al. [HE04] present techniques for transforming images and
videos into painterly renderings using brush strokes. They
use radial basis functions to interpolate brush orientation. Fis-
cher et al. [FBS05] applied stylization techniques to reduce
the visual realism of both the camera image and the virtual
graphical objects of an augmented reality system. For edge de-
tection, the Canny edge detector is used. Image abstraction is
archived by bilateral filtering. To attain real-time frame rates
the bilateral filter is applied to a down sampled version of the
input image. A big drawback of Canny edges is that they can
become disconnected. Winnemöller et al. [WOG06] there-
fore use difference-of-Gaussians (DoG) edges for their video
abstraction framework motivated by the results of [GRG04],
where DoG edges are successfully used for human facial
illustrations. For the abstraction part they use iterated bi-
lateral filtering. DoG edges are also used in [RD07], but
abstraction is based on the Kuwahara [KHEK76] filter. An
image abstraction tool based on gradient domain image pro-
cessing techniques was recently presented by Orzan et al.
in [OBBT07].

3 Method

A schematic overview of our framework is shown in Figure 2.
Input is typically an image, a frame of a video or the output
of a 3D rendering. We start by estimating the local orientation
by calculating the smoothed structure tensor. Then, the input
is iteratively abstracted by using the separated orientation-
aligned bilateral filter. We perform a total of na-iterations.
To the result we apply color quantization as described in
[WOG06]. After ne < na iterations, we extract edges from

(a)

(b)

Figure 3: Tangent field induced by the structure tensor before
(a) and after (b) smoothing. The right side shows the vector
field visualized with line integral convolution. Gradients with
high magnitude are colored red.

the intermediate result using the separated FDoG filter. In
our examples we use ne D 1 and na D 4. Finally, the
extracted edges are superimposed on the output of the color
quantization.

3.1 Local Orientation Estimation

Our estimation of local orientation is based on the eigen-
values of the structure tensor. To make full use of RGB
color information during computation, we combine it with
Di Zenzo’s multi-image gradient method [DZ86, Cum89].
Suppose f W R2 �! R3 denotes our input image. We first
calculate an approximation to the directional derivatives in x-
and y-direction
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The structure tensor induces for a given point a quadratic
form which measures the squared rate of change in direction
of a vector n D .nx ; ny/:
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(a) (b) (c) (d)

Figure 4: Smoothing the structure tensor illustrated for two gradients of a grayscale image. (a) More weight is given to closer
aligned vectors. (b) Vectors pointing in opposite directions do not cancel out. (c) More weight is given to vectors with higher
magnitude. (d) Problematic case: For orthogonal vectors of same magnitude the eigenvalues are equal.

The extremal values of S.n/ on the unit circle correspond
to the eigenvalues of .gij /. Since .gij / is a symmetric ma-
trix, the eigenvalues are real numbers and the eigenvectors are
orthogonal. All principal minor determinants of .gij / are non-
negative and therefore .gij / is positive semidefinite [Swa73],
that is both eigenvalues are non-negative. The major eigen-
value �1 is zero if and only if both gradients are zero. The
minor eigenvalue �2 is zero, e.g., in the case of grayscale
images. By solving det

�
.gij /��i I

�
D 0 the eigenvalues can

be found to be:

�1;2 D
E CG ˙

p
.E �G/2 C 4F 2

2

Corresponding eigenvectors are:

v1 D

�
F

�1 �E

�
v2 D

�
�2 �G

F

�
Locally, the maximum rate of change is attained along Rv1
and the minimum rate of change along Rv2. The rate of
change is given by

p
�1 resp.

p
�2. Note that v1 and v2

only represent orientation and do not point into a particular
direction, because J and�J map to the same structure tensor
.gij /.

By assigning the eigenvector v2 of the minor eigenvalue to
every point of an image, we get a vector field that is aligned
to local edge orientation (Figure 3(a)). Unfortunately, this
vector field has discontinuities and accordingly, tracing its
flow curves, does not give good results. This can be seen on
the right side of Figure 3(b) which shows the vector field
visualized with line integral convolution [CL93]. In order to
smooth the vector field, we apply smoothing to the structure
tensor. The result of applying a 5x5 box filter is shown in
Figure 3(b). Even better results are achieved using a 7x7 or
9x9 Gaussian filter. The smoothing of the structure tensor
is a linear operation, whereas the effect on the eigenvector
field is highly nonlinear, which corresponds geometrically
to principal component analysis. What is important, is that
we, in contrast to [BvVV99, Knu89], do not normalize the
structure tensor. This has the effect that more weight is given
to vectors of higher magnitude. Figure 4 illustrates the ef-
fect of smoothing the structure tensor for two gradients of a

Figure 5: Multiple iterations of the separated orientation-
aligned bilateral filter. Left: Original image. Right: Result
after four iterations (�d D 3:0; �r D 4:25).

grayscale image. For a given pixel we will refer in the follow-
ing to v1 as the gradient direction and to v2 as the tangent
direction. The vector field induced by the tangents is called
the tangent field.

3.2 Separated Orientation-aligned Bilateral Filter

Before filtering, we convert the input to CIE-Lab color space
[WS82] to avoid color bleeding artifacts [TM98]. We use
for the closeness and similarity function Gaussian functions
of the Euclidean distance between their arguments. For an
image f , the bilateral filter is then defined byR

f .x/G�d
.kx � Oxk/G�r .kf .x/ � f . Ox/k/ dxR

G�d
.kx � Oxk/G�r .kf .x/ � f . Ox/k/ dx

;

with Ox being the center of the filter neigborhood and G�
being the one-dimensional Gaussian function of variance � :

G� .t/ D
1

p
2��

exp

 
�
t2

2�2

!
:

We are interested in applying the bilateral filter recursively
(Figure 5) to achieve a nonlinear diffusion effect [BC04].
Unfortunately, the bilateral filter is not separable. Therefore,
it is computationally expensive, especially when applied re-
cursively. We propose to approximate the bilateral filter by
a separated implementation that first filters in gradient and
then in tangent direction (Figure 7). A comparison of our
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(a) Full kernel (b) Orientation-aligned (c) xy-separated [PvV05] (d) uv-separated [Pha06]

Figure 6: Comparison of different bilateral filter implementations (�d D 3:0, �r D 4:25%). Top row shows the ouput of the
filter after 4 iterations. Bottom row shows the filter result with color quantization [WOG06] applied.

Figure 7: Separated orientation-aligned bilateral filter. Yel-
low points indicate sampling positions which are linearly in-
terpolated. Left: First pass filters in gradient direction. Right:
Second pass filters in tangent direction.

approach with other methods to separate the bilateral filter
is shown in Figure 6. Sampling in the required direction is
achieved by using a constant step direction which has unit
size along either x or y axis:

ı.d/ D

†�
1;
dy

dx

�
jdx j � jdy j

�
dx

dy
; 1

�
jdx j < jdy j

Using unit step size for one axis has the advantage that inter-
polation at a sampling position can be achieved by linear in-
terpolation between two neighboring pixels (Figure 7). Let c0
be the sampling origin and either t0 D ı

�
v1.c0/

�
to sample

in gradient direction or t0 D ı
�
v2.c0/

�
to sample in tangent

direction. Then the sampling positions are c˙i D c0 ˙ i t0
and the response of the bilateral filter in direction t0 is given
by:

1

k

�
f .c0/C

NX
iD1

G�d

�
ikt0k

�h
G�r

� f �cCi ��f0 �f �cCi �
C G�r

� f �c�i � � f0 �f �c�i �i�
Here k is the normalization factor, e.g., the sum of all filter
weights, and N can for example be chosen to be b2�d=kt0kc.

3.3 Separated Flow-based Difference-of-Gaussians

We extract edges after ne bilateral filter iterations from the
luminance channel. By construction, the gradient points in
direction where the rate of change is maximum. Thus, if a
point lies on an edge, it is most likely found in gradient direc-
tion and applying a one-dimensional DoG filter in gradient
direction Z


f .x/D�e .kx � Oxk/ dx

gives the most filter response (Figure 8(a)). Here, f denotes
the luminance channel of the input image, and D�e is the
DoG operator, which is defined by:

D�e .t/ D G�e .t/ � � �G�e0
.t/

The parameter �e0 is set to 1:6 � �e to approximate the
Laplacian-of-Gaussian [MH80], � controls the sensitivity
of the edge detection. For smaller values, � detects less noise,
but important edges may be missed. We use � D 0:99 and
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(a) (b) (c) (d)

Figure 8: Separated flow-based DoG. Yellow points indicate sampling positions which are linearly interpolated. (a) First pass
filters in direction of the gradient. (b) Second pass filters along the flow curves induced by the tangent field. (c) Flow curve
integration by line integral convolution [CL93]. (d) Flow curve integration by Euler’s method.

�e D 1:0 in our examples. To evaluate the one-dimensional
DoG filter in gradient direction we use the same approach as
described in the previous section.

To average the calculated filter response, we apply a one-
dimensional Gaussian filter along the flow curves induced
by the tangent field (Figure 8(b)). To calculate the sampling
positions we adapt the approach for sampling along a line. At
every sampling position ci�1 a new step direction ti and a
new step length li is calculated. The sampling positions are
then given by:

ci D ci�1 C li ti

As step direction, the orientation of the tangent v2.ci�1/ is
taken. Since the tangent does not define a particular direction,
the direction with the smaller change in orientation is chosen:

ti D sgn
˝
v2.ci�1/; ti�1

˛
� v2.ci�1/

The step length is chosen such that the new sampling position
is aligned to the center of the pixel in either x or y axis:

liD

„ ˇ̌̌̌
ci�1;x � bci�1;xc �

1
2 � sgn.ti;x/

ti;x

ˇ̌̌̌
jti;x j � jti;y jˇ̌̌̌

ci�1;y � bci�1;yc �
1
2 � sgn.ti;y/

ti;y

ˇ̌̌̌
jti;x j < jti;y j

In general, the sampling points are not uniformly distributed
along the flow curve. For this reason, the trapezium rule
is used for integration. Let c0 be the starting point, tC0 D
v2.c0/ and t�0 D �t

C
0 be the initial positive and negative step

directions, and Li D
Pi
jD1lj , then the result of smoothing

along the flow curve is given by:

1
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We choose NC and N� such that LNC , LNC < 2�m. In
our examples we use a variance of �m D 3:0. By construc-

tion, only linear interpolation between two neighboring pixels
is necessary. The tangent at a sampling position can be cal-
culated from the interpolated structure tensors of the two
neighboring pixels or by using nearest-neighbor interpolation.
In the latter case the tangents can be precomputed. For the
purpose of comparison Figure 8(c) illustrates flow integration
based on line integral convolution [CL93] and Figure 8(d)
shows Euler’s method.

As final step thresholding is applied. We use the smoothed
step function approach described in [WOG06]:

T'e .h/ D
1 h > 0

1C tanh.'e � h/ h � 0

The parameter 'e controls the sharpness of the edge output.
To smooth aliasing artifacts caused by thresholding, we op-
tionally process the thresholded output using a 3x3 Gaussian
filter. Kang et al. [KLC07] use multiple iterations of their
flow-based DoG filter to further enhance the filter response.
With the exception of Figure 10, all examples shown were
created using a single iteration with 'e D 2. Figure 9 com-
pares our approach to the isotropic DoG filter and Figure 10
to the FDoG filter. Note the smooth and coherent line and
curve segments created by the FDoG variants.

4 Results

We have implemented our framework in C++ using the
OpenGL Shading Language (GLSL) and Apple Quicktime
for video decoding. Figure 11 shows an assortment of exam-
ples created with our method. The following table shows the
average frame rate for videos at different resolutions:

Resolution 8800 GTX 8800 GTS FX 570M

640 x 480 87.8 53.1 18.1
768 x 576 61.5 37.5 12.4

1280 x 720 29.9 17.5 6.0
1920 x 1080 12.7 5.4 2.15

As test systems two desktop computers (Core2 Duo E6600,
2.4GHz) with Nvidia GeForce 8800 GTX/GTS graphics card
and a notebook (Core2 Duo 7700, 2.4GHz) with Nvidia
Quadro FX 570M graphics card were used.
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(a) Separated FDoG (b) DoG

Figure 9: Separated FDoG vs. isotropic DoG.

(a) Separated FDoG (b) FDoG [KLC07]

Figure 10: Multiple FDoG iterations. The images show
the result of applying 3 iterations of the filter as described
in [KLC07].

5 Conclusions

In this work we presented a framework of image processing
techniques that abstracts visual contents in HD resolution
in real-time. We showed that the quality of the xy-separated
bilateral filter can be increased by aligning the filter to the
local structure. Moreover, we have shown that flow-based
DoG filtering can be implemented as a separated algorithm. It
outperforms the classical DoG filter in quality, although it is
nevertheless efficient to compute. Both presented techniques
rely on a smooth vector field whose flow curves follow salient
image features. We showed that such a vector field can be
constructed from the eigenvalues of the smoothed structure
tensor in a highly efficient way.
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Figure 1, 2, 11(a), 11(b), 11(d), 11(e) original photos courtesy http://philip.greenspun.com.
Figure 11(c) original from the movie ’remixed’ by The Procrastinators at MIT.
Figure 5, 6, 11(f) original photo copyright by Anthony Santella [DS02, SD02].
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