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Figure 1: Example comparing the proposed multi-scale approach with the single-scale approach.

Abstract

The anisotropic Kuwahara filter is an edge-preserving filter that is
especially useful for creating stylized abstractions from images or
videos. It is based on a generalization of the Kuwahara filter that
is adapted to the local structure of image features. In this work,
two limitations of the anisotropic Kuwahara filter are addressed.
First, it is shown that by adding thresholding to the weighting term
computation of the sectors, artifacts are avoided and smooth results
in noise-corrupted regions are achieved. Second, a multi-scale com-
putation scheme is proposed that simultaneously propagates local
orientation estimates and filtering results up a low-pass filtered pyra-
mid. This allows for a strong abstraction effect and avoids artifacts
in large low-contrast regions. The propagation is controlled by the
local variances and anisotropies that are derived during the computa-
tion without extra overhead, resulting in a highly efficient scheme
that is particularly suitable for real-time processing on a GPU.

CR Categories: I.3.3 [Computing Graphics]: Picture/Image
Generation—Display algorithms; I.4.3 [Computing Methodologies]:
Image Processing And Computer Vision—Enhancement Filtering

Keywords: Non-photorealistic rendering, image abstraction,
anisotropic Kuwahara filter

1 Introduction

A common approach to creating non-photorealistic depictions is to
transform an image or video using an interactive or automatic tech-
nique. A classical example is the painting system by Haeberli [1990],
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where properties such as color, size and orientation of interactively
placed brush strokes are guided by an input image. An example of
an automatic system for transforming videos using various paint-
ing styles is [Hays and Essa 2004], wherein the brush strokes are
placed automatically. Temporal coherent results are achieved by
using optical flow analysis.

Instead of focusing on simulating a particular artistic technique or
style, image abstraction refers to the process of simplifying scene
information by removing unnecessary information that is irrelevant
for a particular purpose. A common approach to image abstrac-
tion is segmentation. Several methods based on mean shift have
been proposed for abstracting images [DeCarlo and Santella 2002;
Wen et al. 2006] and videos [Wang et al. 2004; Collomosse et al.
2005]. Typically, the segmented regions created by mean shift have
rough boundaries and therefore require elaborate post-processing.
The methods that deal with video are also complicated, since they
perform processing in the spatiotemporal domain.

Another way to perform stylization and abstraction of images and
videos is through the use of edge-preserving smoothing and enhance-
ment filters. Prominent techniques in this area have in common that
they remove detail in low-contrast regions without filtering across
discontinuities, thus leaving the overall structure of the input image
unaffected. Popular examples are the bilateral filter, the Kuwahara
filter, and techniques based on or motivated by partial differential
equations (PDE).

Among these, the anisotropic Kuwahara filter [Kyprianidis et al.
2009] is of particular interest in image and video abstraction. It cre-
ates a feature-preserving and direction-enhancing look and, unlike
other nonlinear smoothing filters, is very robust against high-contrast
noise. In addition, it avoids overblurring in low-contrast regions and
provides a consistent level of abstraction across the image. More-
over, excellent temporal coherence is achieved when applied to video
on a frame-by-frame basis. However, the level of abstraction that
is achievable with the anisotropic Kuwahara filter is limited by the
filter radius. Simply increasing the filter radius is typically not a
solution, as it often results in artifacts. A possibility would be to
control the radius adaptively per pixel depending on the local neigh-
borhood, but the computational cost would be very high, as the filter
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Figure 2: Schematic overview of the proposed technique.

depends quadratically on the radius. In this work, a better solution is
provided by generalizing the anisotropic Kuwahara filter to operate
on multiple scales. The computations are carried out on an image
pyramid, where processing is performed in a coarse-to-fine manner,
with intermediate results being propagated up the pyramid.

2 Related Work

The use of image pyramids is a popular tool in computer graphics
and image processing. It goes back to the early work of Burt and
Adelson [1983] and Williams [1983]. While image pyramids are
often used to speed up computationally expensive operations on
large images, scale-space theory [Lindeberg 1996] provides a so-
phisticated theory for representing and analyzing images at different
scales. Several techniques in the field of non-photorealistic ren-
dering make use of image pyramids or scale-space techniques. An
example is the stroke-based painting technique by Hertzmann [1998].
Here, the final image is iteratively painted in a coarse-to-fine manner.
Starting with a large brush size, the brush size is lowered for every
iteration. Location, orientation, and color are determined by analyz-
ing the source image at a scale related to the current brush size. An
example for a technique that uses an image pyramid is the image
abstraction technique of DeCarlo and Santella [2002]. Mean-shift
segmentation is performed on each pyramid level and the results are
then organized in a tree structure representing the relationships of
the different color regions and boundaries. Guided by eye-tracking
data, this structure is then used to highlight or abstract different parts
of the image.

A well-known edge-preserving smoothing filter is the bilateral filter
[Tomasi and Manduchi 1998]. Winnemöller et al. [2006] combined
bilateral filtering with color quantization and difference of Gaussians
edges, to create cartoon-style abstractions from images and videos.
Kyprianidis and Döllner [2008] extended this approach and pre-
sented separable implementations of the bilateral and difference of
Gaussians filters that are aligned to the local image structure. Kang
et al. [2009] presented a similar system, wherein the filter shapes
of the bilateral and difference of Gaussians filters are deformed to
follow a vector field derived from the salient image features. Since
methods based on the bilateral filter preserve high-contrast edges,
they generally fail for high-contrast images where either no abstrac-
tion is performed or too much detail is removed, typically resulting
in an inconsistent abstraction.

Another popular edge-preserving smoothing filter is the Kuwahara
filter [Kuwahara et al. 1976]. The general idea behind this filter is to
divide the filter kernel into four rectangular subregions that overlap
by one pixel. The filter response is then defined by the mean of a
subregion with minimum variance. The Kuwahara filter produces
clearly noticeable artifacts, which are due to the use of rectangular

subregions. In addition, the subregion selection process is unstable if
noise is present or if subregions have the same variance, which then
results in randomly chosen subregions and corresponding artifacts.
A more detailed discussion of limitations of the Kuwahara filter can
be found in [Papari et al. 2007].

Several attempts have been made to address the limitations of the
Kuwahara filter. Papari et al. [2007] defined a new criterion for
overcoming the limitations of the unstable subregion selection pro-
cess. Instead of selecting a single subregion, the result is defined
as the weighted sum of the means of the subregions. The weights
are defined based on the variances of the subregions, resulting in
smoother region boundaries and fewer artifacts. To improve this
further, the rectangular subregions are replaced by smooth weighting
functions defined over sectors of a disc.

The anisotropic Kuwahara filter [Kyprianidis et al. 2009] builds upon
the generalized Kuwahara filtering concept by Papari et al. [2007]
and replaces the weighting functions defined over sectors of a disc
by weighting functions defined over ellipses. By adapting shape,
scale and orientation of these ellipses to the local structure of the
input, artifacts are avoided. With this adaption, directional image
features are better preserved and emphasized, resulting in overall
sharper edges and the enhancement of directional image features. A
further modification has been presented in [Kyprianidis et al. 2010b],
wherein new weighting functions based on polynomials are defined
that can be evaluated directly during the filtering process.

A further image abstraction technique has been presented by Kang
and Lee [2008]. Their approach is based on mean curvature flow in
conjunction with shock filtering. Methods based on edge-preserving
filters, such as the bilateral or the Kuwahara filter, smooth irrelevant
color variations while protecting region boundaries, but they do not
simplify the shape of those boundaries. In contrast, mean curvature
flow simplifies isophote curves and regularizes their geometry. Since
mean curvature flow does not properly protect directional image
features, Kang and Lee constrained the mean curvature flow. Mean
curvature and its constrained variant contract isophote curves to
points [Grayson 1987]. For this reason, important image features
must be protected by a user-defined mask. A further limitation is
that the technique is not stable against small changes in the input,
and therefore is not suitable for per-frame video processing. Another
technique based on diffusion and shock filtering has been recently
presented by Kyprianidis and Kang [2011], wherein flow-guided
smoothing and sharpening orthogonal to the flow are combined.
Instead of modeling the process by a PDE, approximations that
operate as local filters on a neighborhood of a pixel are used. This
makes the technique more stable and, in particular, suitable for per-
frame video processing. Interestingly, there is a connection between
PDE-based techniques and the Kuwahara filter. As shown by van



den Boomgaard [2002], the Kuwahara filter can be interpreted as a
PDE with linear diffusion and shock filter term.

An image abstraction technique based on image processing in the
gradient domain has been presented by Orzan et al. [2007]. The
technique is known not to create temporal coherent output for video.
Bhat et al. [2010] have presented a robust optimization framework
that allows for the specification of constraints for pixel values and
pixel gradients. The framework is able to create temporal coherent
video output, but optical flow is required and a global optimization
problem for the entire video must be solved. Therefore, the technique
is not suitable for real-time processing.

3 Method

A schematic overview of the proposed technique is shown in Figure 2.
Processing starts with building an image pyramid of the input image.
Next, the pyramid is processed from the coarsest level to the finest
level. Processing starts with calculation of the smoothed structure
tensor and anisotropic Kuwahara filter for the coarsest level. These
results are then upsampled to the next finer level. Based on an
approximation of the local variances, the upsampled filtering result
of the anisotropic Kuwahara filter is then merged with the image
data of the current pyramid level and the smoothed structure tensor
is calculated from this merged result. Based on their anisotropy
measure, the smoothed structure tensor and the upsampled structure
tensor from the previous level are now merged. Using the merged
structure tensor, the anisotropic Kuwahara filter is applied to the
merged image data. The result of the anisotropic Kuwahara filter
and the merged structure tensor are upsampled, and the process is
repeated for the next finer level until the finest level of the pyramid is
reached. The different parts of the algorithm are discussed in detail
in the following sections.

3.1 Pyramid Construction

The pyramid construction is performed using resampling convolu-
tion [Schumacher 1992]. A down-sampling factor of 2 was used for
all experiments. Motivated by scale-space theory [Lindeberg 1996]
and the classical approach by Burt and Adelson [1983] for building a
pyramid, a windowed Gaussian was used initially as the resampling
filter. However, the Gaussian filter tends to remove too many low fre-
quencies, resulting in an image that is less sharp. Therefore, several
popular resampling filters were considered, including bilinear, cubic,
Catmull-Rom, Mitchell-Netravali, and Lanczos. Among these, the
Lanczos3 filter [Blinn 1989] was found to provide the best result for
most examples. As pointed out by Blinn, the Lanczos3 filter keeps
low frequencies and rejects high frequencies better than most other
well-known filters, making it well suited for the technique presented.
Using the Lanczos3 filter might create or enhance local extrema and
violates the causality axiom of scale-space theory [Lindeberg 1996];
nevertheless, it works very well in this particular case.

3.2 Local Structure Estimation

The estimation of local orientation is based on the eigenanalysis
of the structure tensor. This section provides background material
on the calculation of image gradients, the structure tensor, and the
anisotropy measure used. After that, the proposed multi-scale local
structure estimation scheme is presented.

3.2.1 Gradient Calculation

The calculation of the structure tensor requires approximations of
the partial derivatives. Popular choices for calculating these approx-
imations are Gaussian derivatives and the Sobel filter. The usage
of Gaussian derivatives corresponds to smoothing the image before
gradient calculation with a Gaussian filter. However, this smoothing

(a) No smoothing (b) With smoothing

Figure 3: Visualization of the minor eigenvector of the structure
tensor for a test ring pattern corrupted with Gaussian noise of
variance � D 0:02.

process also results in a loss of information and leads to a less accu-
rate estimation. A better approach is to use a small 3 � 3 filter for
the gradient calculation and then smooth the structure tensor after
its calculation. This can be done, for example, by using the Sobel fil-
ter. However, the classical Sobel filter is not rotationally symmetric;
therefore, a better choice is the filter developed by Jähne et al. [1999],
which is optimized for rotational symmetry:

Dx D
1

2

0@ p1 0 �p1
1 � 2p1 0 2p1 � 1
p1 0 �p1

1A ; Dy D D
T
x ;

with p1 D 0:183. Let f denote the input image. Then, approxima-
tions of the partial derivatives in x- and y-directions are given by
convolution with the corresponding filter stencils:
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3.2.2 Structure Tensor

In this section, two approaches for defining the structure tensor are
presented. The first approach follows the geometric point of view
[Di Zenzo 1986; Cumani 1991] using Riemannian Geometry [Lee
2003], and the second approach is based on the formulation of an
optimization problem and closely follows [Brox et al. 2006].

Geometric Definition Let U � R2 and let us assume that the
input image is given by a differential function f W U ! Rn. Here,
case n D 1 corresponds to gray-scale images and case n D 3
corresponds to color images. Given this function, we can now
consider its graph as a two-dimensional submanifold of R2Cn. The
map

F W

�
U �! R2Cn

.u; v/ 7!
�
u; v; f 1.u; v/; : : : ; f n.u; v/

�
then defines a smooth global parameterization of the embedding,
and the Euclidean metric xg of R2Cn induces a Riemannian metric
on the graph that is given in chart coordinates by:

g D F �xg D F �
��

dx1
�2
C : : :C

�
dx2Cn

�2�
D d

�
x1 ı F

�2
C : : :C d

�
x2Cn ı F

�2
D du2 C dv2 C

Pn
iD1

�
df i

�2
Here, !2 denotes the common abbreviation for the symmetric prod-
uct of a tensor ! with itself. Now, let us consider a point p 2 U of
the image domain and a tangent vector X 2 TpU ' R2. The Eu-
clidean length of X in local coordinates corresponds to the length in
the image domain and the length given by the induced Riemannian
metric q

hX;Xip D

q
gp.X;X/



corresponds to measuring length on the image embedded as a graph
in R2Cn. Hence, for tangent vectors of fixed Euclidean length,
e.g. kXk D 1, the Riemannian metric g can be interpreted as mea-
suring the squared local rate of change in direction X .

We are interested in finding the local orientation at p; i.e., the
directions where the rate of change of the image regarded as a graph
is either minimum or maximum. For unit length tangent vectors,
the term du2 C dv2 of g is constant and equal to one. To find
the minimum and maximum local rate of change, it is therefore
sufficient to consider only the term

Pn
iD1.df i /2. The differential

of the i -th component of f is given by
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is the so-called structure tensor. For gray-scale images, the structure
tensor is simply given by the outer product of the gradient

J D rf rf | ;

and for color images it is given by the sum of the outer products of
the gradients of the different color channels. For example, for an
RGB color image we have:

J D rRrR|
CrGrG|

CrBrB|

The extremal values of the quadratic form (1) on the unit circle
correspond to the eigenvalues of the structure tensor J . Since J
is a symmetric matrix, the eigenvalues are real numbers and the
eigenvectors are orthogonal. All principal minor determinants of J
are non-negative and therefore J is positive semidefinite; i.e., both
eigenvalues are non-negative [Swamy 1973]. The eigenvalues can
be directly computed by solving det.J � �i I/ D 0 and are given by

�1;2 D
E CG ˙

p
.E �G/2 C 4F 2

2
:

The corresponding eigenvectors are

� D

�
F

�1 �E

�
and � D

�
�2 �G
F

�
;

where � is the direction of maximum change and � is the direction
of minimum change. Moreover, the local orientation in the direction
of the minor eigenvector can be directly derived from the structure
tensor and is given by:
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Figure 4: Deviation of a gradient g.y/ WD r.y/ from a given
direction v.x/. The term hg.y/; v.x/iv.x/ is the projection of g.y/
onto v.x/.

So far we have made the assumption that the image is given by
a smooth function. This is obviously wrong for typical natural
images, as can be seen in Figure 3(a). Therefore, a common practice
is to smooth the image prior to derivative computation with, for
example, a Gaussian filter. However, a better approach is to smooth
the structure tensor instead of the image as shown in Figure 3(b).
This can be best understood from the optimization point of view.

Definition by Optimization Let I W U ! R be a gray-scale im-
age and let g.y/ WD rI.y/, y 2 U be the gradients of the image.
Moreover, let x 2 U be a fixed but arbitrary point. Now, suppose
a direction v.x/ 2 R2 is given. Then, the deviation of a single
gradient g.y/ from v.x/ can be defined as (see also Figure 4):

e.x; y/ D
g.y/ � hg.y/; v.x/iv.x/

The total squared error at x can then be defined by the convolution
of e2 with a Gaussian function G�:

E.x/ D

Z
G�.x � y/ � e

2.x; y/ dy (2)

Using the linearity of the scalar product, e2.x; y/ can be simplified
to:

e2 D he; ei D
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By substituting this into equation (2) we get:
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|
�
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�
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The first term of E.x/ is constant. Therefore, minimizing E.x/ is
equivalent to maximizing the second term. Using the linearity of the
integral, this term can be rewritten asZ

G�.x � y/ v.x/
|
�
g.y/g.y/|

�
v.x/ dy

D v.x/|
�Z

G�.x � y/ g.y/g.y/
| dy

�
„ ƒ‚ …

WDJ�.x/

v.x/ ;

with J�.x/ being the smoothed structure tensor at x. Using the
method of Lagrange multipliers, it can now be shown [Brox et al.
2006] that maximizing v|J� v with the constrained kvk D 1 is
equivalent to an eigenanalysis of J� v D �v, and that the vector that
minimizes E.x/ is given by the major eigenvector. This shows that
smoothing the structure tensor corresponds to solving a weighted
least squared problem. In noise-corrupted images, this generally
leads to more stable estimates.
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Figure 5: Visualization of the minor eigenvector field of the
smoothed structure tensor (� D 2) for a test ring pattern corrupted
by Gaussian noise of variance � D 0:25.

3.2.3 Anisotropy Measure

Besides its superior robustness, as explained in the previous section,
the smoothed structure tensor has a second advantage over orien-
tation averaging techniques, such as the mean of angles [Mardia
and Jupp 1999] or the edge tangent flow [Kang et al. 2007]. The
minor eigenvalue �2 of the structure tensor measures how much the
gradients deviate from the axis defined by the major eigenvector. It
provides a way to measure the quality of the orientation estimation.
If �1 � �2 there is a clear dominant orientation in the considered
neighborhood. If, on the other hand, �1 � �2, there is no particular
designated axis among the gradients. The normalized difference of
the eigenvalues thus provides a measure of anisotropy [Yang et al.
1996]:

A D
�1 � �2

�1 C �2

The anisotropy A ranges from 0 to 1, where 0 corresponds to
isotropic and 1 corresponds to entirely anisotropic regions.

3.2.4 Multi-scale Estimation

The multi-scale local structure estimation is inspired by the
multi-scale orientation estimation methods developed by Wilson
et al. [1990] and Feng and Milanfar [2002]. Similar to these ap-
proaches, a weighted linear combination is used to propagate the
estimates from coarser to finer pyramid levels. However, in contrast
to the other techniques that propagate gradient estimates, in this
work the structure tensor is propagated.

The processing starts at the coarsest level of the pyramid, where
the smoothed structure tensor is calculated as usual. For the other
pyramid levels, the smoothed structure tensor is calculated and then
combined with the upsampled structure tensor from the previous
level, using linear interpolation:

zJ k� D ˛
kJ k� C

�
1 � ˛k

�
xJ kC1�

Here, xJ kC1� denotes the upsampled structure tensor from the pre-

vious level, i.e., zJ kC1� upsampled to the next level. J k� is the
smoothed structure tensor computed from the merged image data of
the current pyramid level. The linear weighting factor is defined per
pixel and based on the anisotropy measure:

˛k D
Ak

Ak C xAkC1

Here, Ak is the anisotropy from the current level and xAk C 1 is the
upsampled anisotropy from the previous level, which means that
more weight is given to the structure tensor that is more anisotropic.
This leads to a more robust estimation, as shown in Figure 5.
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Figure 6: The mapping SR�' maps a rotated ellipse to the unit
disc.

3.3 Anisotropic Kuwahara Filter

In this section, first the working principles of single-scale anisotropic
Kuwahara filtering are reviewed. The presentation mainly follows
[Kyprianidis et al. 2009], but in addition, a new thresholding step for
the weighting factor computation is proposed. Then, the multi-scale
approach is presented.

3.3.1 Single-scale Filtering

Let f W R2 �! R3 denote the input image, let .x0; y0/ 2 R2 be a
point, let ' be the local orientation and let A be the anisotropy at
.x0; y0/. To adjust the eccentricity of the filter shape depending on
the amount of anisotropy, we set:

a D
˛ C A

˛
r and b D

˛

˛ C A
r :

Here r denotes the desired radius of the filter and ˛ > 0 is a tuning
parameter that is typically set to ˛ D 1. In this case, since A is in
Œ0; 1�, it follows that we have r � a � 2r and r=2 � b � r . Now
let

S D

 
a�1 0

0 b�1

!
and let R�' be the matrix defining a rotation by �'. The mapping
SR�' then defines a linear coordinate transform that maps a rotated
ellipse to the unit disc (Figure 6). The anisotropic Kuwahara filter
now partitions this ellipse into different sectors similar to the rectan-
gular areas of the original Kuwahara filter. Let N denote the number
of sectors, with typical values N D 4 or N D 8. The different
sectors must overlap. To achieve this, the anisotropic Kuwahara uses
weighting functions that define how much influence a pixel has on
a sector. To define these weighting functions over the ellipse, the
general idea is to define corresponding weighting functions over the
unit disc and then pull these back to the ellipse.

Let �0 be the characteristic function that is 1 for all points of R2

with argument in .��=N; �=N � and 0 otherwise. Then

K0 D .�0 ? G�/ �G�

defines smooth weighting function over the unit circle. Here, G�
and G� denote Gaussian functions and ? denotes convolution. The
convolution smoothes the characteristic function such that pixels
from neighboring sectors are also considered in the weighting pro-
cess. The multiplication achieves a decay with increasing radius
(Figure 7). Reasonable values for �r and �s are �r D 0:4 and
�s D �r=3. Weighting functions for the other sectors can be defined
by smoothing the corresponding characteristic function or simply by
rotating K0:

Ki D K0 ıR�2�i=N ; i D 0; : : : ; N � 1

Here, ı denotes composition of functions. By pulling back Ki , we
finally get weighting functions wi defined over the ellipse:

wi D Ki ı SR�' D K0 ıR�2�i=NSR�'



(a) (b) (c)

Figure 7: Construction of the weighting functions of the anisotropic
Kuwahara filter: (a) Characteristic function �0. (b) �0 ? G�.
(c) K0 D .�0 ? G�/ �G� .

Now let

mi D
1

k

Z
f .x/wi .x � x0/ dx

be the weighted local averages and

s2i D
1

k

Z
f 2.x/wi .x � x0/ dx � m2i

be the squared standard deviations, where k denotes the correspond-
ing normalization factor. The output of the anisotropic Kuwahara
filter is then defined as a weighted sum of the local averages of the
sectors: P

!imiP
!i
D
!0m0 C � � � C !N�1mN�1

!0 C � � � C !N�1
The weights !i in this sum are defined by:

!i D
�

max
�
�w ; ksik

���q
This definition of the weighting factors !i ensures that more weight
is given to sectors with low standard deviation ksik, i.e., those that
are more homogeneous. At color region boundaries, sectors that lie
completely on one side of the boundary have low standard deviation
and thus receive high weight. Sector that cross the boundary have
high standard deviation and receive a low weight (Figure 8). Since
by construction all sectors contain the filter origin, it is not possible
that two sectors lie completely in different color regions. However,
in homogeneous regions the standard deviation is low for all sec-
tors. Small differences in the standard deviation, for example as a
result of noise, can therefore lead to random chosen weights. This
typically leads to artifacts, as shown in Figure 9. This problem can
be avoided by thresholding the standard deviations before exponen-
tiation. This also avoids the divide by zero problem for flat color
regions, which have zero standard deviation. Typical values for the
weight computation are q D 8 and �w D 0:02.

3.3.2 Multi-scale Filtering

Multi-scale filtering is performed in a similar manner as the multi-
scale local structure estimation. The pyramid is processed in coarse-
to-fine order. For the coarsest level, the anisotropic Kuwahara filter
is computed as usual. For the other levels, the upsampled filtering
result from the previous level and the image data of the current level
are merged using a linear combination:

zf k D ˇkf k C
�
1 � ˇk

�
xf kC1

Here, zf k denotes the merged result, f k is the original image data
of the current level and xf kC1 is the upsampled filtering result from
the previous level. The merged result is now used to calculate the
structure tensor of the current level as already described. Finally,
the merged result is processed using the single-scale anisotropic
Kuwahara filter. This process is then repeated until the finest level

(a) Homogeneous (b) Corner (c) Edge

Figure 8: The anisotropic Kuwahara filter uses weighting functions
defined over an ellipse, whose shape is based on the local orientation
and anisotropy. The filter response is defined as a weighed sum of
the local averages, where more weight is given to averages with low
standard deviation.

of the pyramid is reached. The weighting factor ˇk is defined based
on the standard deviation sk by:

ˇk D clamp
�
sk � ps .pd /

k
� �v ; 0; 1

�
Additional user control is provided through parameters ps and pd .
Parameter ps applies to all levels in a uniform way, while parameter
pd takes scale into account. In order to account for small standard
deviations due to noise, threshold parameter �v is provided. Typical
values for these parameters are ps D 0:5, pd D 1:25, and �v D 0:1.

Calculation of the standard deviation is computationally expensive,
and therefore an approximation is used. During the computation
of the anisotropic Kuwahara filter, the standard deviations si for
each sector are computed. Since the sum of all weighting functions
wi is equivalent to a Gaussian, the sum of the thresholded standard
deviations

smax D

N�1X
iD0

max
�
�w ; ksik

�
is an approximation of for the local standard deviation that can be
easily computed during filtering at negligible computational cost.
Because the standard deviation is required for the merging process
before the actual computation of the anisotropic filter, the approx-
imate standard deviation smax is stored during the filtering as an
additional result. This can be done, for example, by storing it in
the alpha channel of the filter result. At each level of the pyramid,
the approximate standard deviation from the previous level is then
upsampled and used to calculate the weighting factor ˇk (Figure 10).

Upsampling is performed with bilinear interpolation; typically, there
is no benefit from using more sophisticated upsampling techniques.
This might be surprising at first glance, especially since one might ex-
pect that usage of a better upsampling filter whould result in sharper
color boundaries. However, the approximate standard deviation is
high for pixels close to edges, and therefore the weight ˇk is one.
Thus, pixels close to the edges will be overridden during the merging
process.

4 Results

The proposed technique was implemented using C++ and CUDA.
The GLSL implementation of the anisotropic Kuwahara filter pre-
sented in [Kyprianidis et al. 2010a] was used as the initial starting
point. The implementation does not make use of special features of
CUDA. Instead, pitch linear memory and textures are used. There-
fore, similar results should be achievable using shading languages,
such as GLSL, Cg, or HLSL. Using an NVIDIA GTX 580 graphics
card, processing an image with resolution 512 � 512 takes approx-
imately 42 milliseconds. Image content at HD 720p (1280 � 720)
resolution takes approximately 150 milliseconds to process.



(a) Original image (b) Without thresholding (c) With thresholding

Figure 9: Comparison of weight computation with and without thresholding.

(a) Pyramid of original image data (b) Upsampled approximation to local standard deviation (c) Merged and filtered result for each level

Figure 10: Original image, approximation to standard deviation and output of the anisotropic Kuwahara filter for the different pyramid levels.

A comparison with the bilateral filter [Tomasi and Manduchi 1998]
is shown in Figure 11. As can be seen, the level of abstraction
is inconsistent for the bilateral filter. For example, the fur above
the nose is less abstracted than the fur at the neck. The single-
scale anisotropic Kuwahara filter, on the other hand, provides a very
consistent level of abstraction over the whole image. The multi-scale
version provides a much stronger abstraction. While there is slightly
less abstraction above the nose, the overall look is also consistent.
However, some of the cat’s whiskers are lost. Moreover, the outputs
of the single- and multi-scale methods look a little bit washed out.

In Figure 12 a comparison with coherence-enhancing filtering
[Kyprianidis and Kang 2011] is shown. The level of abstraction
is quite similar to the single-scale anisotropic Kuwahara filter, but
coherence-enhancing filtering creates output with stronger contrast,
which is probably due to the shock filter. The output of the multi-
scale approach looks very similar, but more detail has been removed,
such as from the jackets and the background.

Two problematic cases, where the multi-scale method fails to pro-
duce good-looking results for the default parameters are shown in
Figure 13 and Figure 14. In the first case, parts of the image look
blurred, and the abstraction of the rocks in the background is in-
consistent. Moreover, parts above the plant are blended with the
ground. By adjusting parameters ps and pd , the blurring can be
removed, but then the abstraction is also less strong. In the second
case, the image is very difficult to abstract due to its high-frequency

texture. The multi-scale method performs decently, but there are
clearly noticeable artifacts near the color region boundaries, such as
around the eyes and where the nose meets the face.

5 Conclusions

In this work, a generalization of the anisotropic Kuwahara filter to
multiple scales was presented. Processing in a coarse-to-fine manner
using a pyramid enabled aggressive abstraction and the creation
of large homogeneous color regions. Moreover, the technique can
be efficiently implemented on a GPU, and it creates temporally
coherent output for video without further processing.
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