
EUROGRAPHICS 2011 / M. Chen and O. Deussen
(Guest Editors)

Volume 30 (2011), Number 2

Image and Video Abstraction by
Coherence-Enhancing Filtering*

Jan Eric Kyprianidis 1 Henry Kang 2

1 Hasso-Plattner-Institut, Germany
2 University of Missouri, St. Louis, USA

Abstract
In this work, we present a non-photorealistic rendering technique to create stylized abstractions from color images
and videos. Our approach is based on adaptive line integral convolution in combination with directional shock
filtering. The smoothing process regularizes directional image features while the shock filter provides a sharpening
effect. Both operations are guided by a flow field derived from the structure tensor. To obtain a high-quality flow field,
we present a novel smoothing scheme for the structure tensor based on Poisson’s equation. Our approach effectively
regularizes anisotropic image regions while preserving the overall image structure and achieving a consistent level
of abstraction. Moreover, it is suitable for per-frame filtering of video and can be efficiently implemented to process
content in real-time.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Display algorithms

1. Introduction

Directional features and flow-like structures are considered
pleasant, harmonic, or at least interesting by most humans
[Wei99]. They are also a highly sought-after property in many
of the traditional art forms, such as paintings and illustrations.
Enhancing directional coherence in the image helps to clarify
region boundaries and features. As exemplified by Expres-
sionism, it also helps to evoke mood or ideas and even elicit

* The definitive version is available at diglib.eg.org and
www.blackwell-synergy.com.

emotional response from the viewer [Wik10]. Particular ex-
amples include van Gogh and Munch, who have emphasized
these features in their paintings. In this work, we present a
new image and video abstraction technique that places empha-
sis on enhancing the directional coherence of features. The
most notable related work in this category is image abstrac-
tion and stylization based on partial differential equations
(PDE), in particular, shape-simplifying image abstraction by
Kang and Lee [KL08] and Weickert’s coherence-enhancing
shock filter [Wei03]. However, such PDE-based techniques
may require a large number of iterations and tend to be unsta-
ble when used for video processing [Par08].
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(a) Original image (b) Proposed method (N D 2) (c) Proposed method (N D 5) (d) Proposed method (N D 10/

(e) Bilateral filter [TM98] (f) Anisotropic Kuwahara Filter [KKD09] (g) Shape-simplifying image
abstraction [KL08]

(h) Coherence-enhancing shock filter [Wei03]

Figure 1: Comparison of our approach with other popular image abstraction techniques. Top row shows results of the algorithm
for different number of iterations (N D 2; 5; 10).

We build upon the idea of combining diffusion with shock
filtering for image abstraction, but our approach is, in a sense,
contrary to that of [KL08], which our technique outperforms
in terms of speed, temporal coherence and stability. Instead
of simplifying the shape of the image features, we aim to
preserve the shape by using a curvature preserving smooth-
ing method that enhances coherence. More specifically, our
approach performs smoothing, in the direction of the smallest
change, and sharpening, in the orthogonal direction. Instead
of modeling this process by a PDE and solving it, we use ap-
proximations that operate as local filters on a neighborhood
of a pixel. Therefore, good abstraction results are already
achieved in a few iterations. This makes it possible to process
images and video at real-time rates on a GPU. It also results
in a much more stable algorithm that enables temporally-
coherent video processing. Compared to the conventional
abstraction approaches [WOG06, OBBT07, KKD09], we pro-
vide a good balance between the enhancement of directional
features and the smoothing of isotropic regions. As shown in
Figure 1, our technique preserves and enhances directional
features better and creates stronger contrast, which helps to
clarify boundaries and features. Furthermore, our approach
facilitates easy control over the level of abstractions.

2. Related Work

A common approach to image abstraction is segmenta-
tion. A classical example is the work by DeCarlo and San-
tella [DS02], where eye-tracking data is used to guide image
abstraction based on mean shift segmentation at different
scales.

Another popular approach to image abstraction is the use
of edge-preserving smoothing and enhancement filters. Tech-
niques of this type commonly remove detail in low-contrast
regions without filtering across discontinuities and, thus,
leave the overall structure of the input image unaffected.
A well-known example is the bilateral filter [TM98]. Win-
nemöller et al. [WOG06] combine bilateral filtering with
color quantization and difference of Gaussians edges, to cre-
ate cartoon-style abstractions from images and videos. Kypri-
anidis and Döllner [KD08] extend this approach and present
separable implementations of the bilateral and difference of
Gaussians filters that are aligned to the local image structure.
Kang et al. [KLC09] present a similar system, where the filter
shapes of the bilateral and difference of Gaussians filters are
deformed to follow a vector field derived from the salient
image features. Since methods based on the bilateral filter
preserve high-contrast edges, they generally fail for high-
contrast images where either no abstraction is performed
or too much detail is removed. This typically results in an
inconsistent abstraction.

The Kuwahara filter [KHEK76] is another popular edge-
preserving filter. It produces clearly noticeable artifacts due to
the use of rectangular subregions. In addition, the subregion
selection process is unstable if noise is present or if the subre-
gions have the same variance. This results in randomly chosen
subregions and corresponding artifacts. Several attempts have
been made to address the limitations of the Kuwahara filter.
Papari et al. [PPC07] define a new criterion to overcome
the limitations of the unstable subregion selection process
and replace the rectangular subregions by smooth weight-
ing functions defined over sectors of a disc. The anisotropic
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Figure 2: Schematic overview of the proposed method.

Kuwahara filter [KKD09] builds upon this and replaces the
weighting functions, defined over sectors of a disc, by weight-
ing functions defined over sectors of ellipses. By adapting
shape, scale and orientation of these ellipses to the local struc-
ture of the input, artifacts are avoided and directional image
features are better preserved and emphasized. The anisotropic
Kuwahara filter is very robust against noise and stable against
small changes in the input. This makes it especially useful
for video abstraction where per-frame processing achieves
excellent results.

A further image abstraction technique has been presented
by Kang and Lee [KL08]. Their approach is based on mean
curvature flow in conjunction with shock filtering. Methods
based on edge-preserving filters, such as the bilateral or the
Kuwahara filter, smooth irrelevant color variations while pro-
tecting region boundaries, but they do not simplify the shape
of those boundaries. In contrast, mean curvature flow sim-
plifies isophote curves and regularizes the geometry. Since
mean curvature flow does not properly protect directional
image features, Kang and Lee constrain the mean curvature
flow. Mean curvature, and its constrained variant, contract
isophote curves to points [Gra87]. For this reason, important
image features must be protected by a user-defined mask. A
further limitation is that the technique is not stable against
small changes in the input and, therefore, not suitable for
per-frame video processing.

An image abstraction technique, based on image process-
ing in the gradient domain, has been presented by Orzan et
al. [OBBT07]. The technique is known not to create temporal
coherent output for video [BZCC10]. Bhat et al. [BZCC10]
present a robust optimization framework that allows for the
specification of constraints for pixel values and pixel gradi-
ents. The framework is able to create temporal coherent video
output, but optical flow is required and a global optimization
problem for the entire video must be solved. Therefore, the
technique is not suitable for real-time processing.

3. Method

Processing is performed iteratively and stops after a user-
defined number of iterations. The number of iterations con-
trols the strength of the abstraction (Figure 1(b)-(d)). A
schematic overview of the algorithm is shown in Figure 2.
Processing starts with an input image, typically an RGB color

image. Next, adaptive smoothing and sharpening are per-
formed for the given number of iterations. Both techniques
require information about the local structure, which is ob-
tained by an eigenvalue analysis of the smoothed structure
tensor. The local structure is computed, twice, for every itera-
tion. It is computed before the adaptive smoothing and before
the sharpening. With every iteration the result becomes closer
to a piecewise constant image with large smooth or even flat
regions where no distinguished orientation is defined. Having
valid orientations defined for these regions is important for
the stability of the algorithm. Our solution is to use the struc-
ture tensor from the previous calculation in this case. For the
first calculation, where no result from a previous computation
is available, a relaxation of the structure tensor is performed.
Finally, edges are smoothed using the adaptive smoothing
with a small standard deviation.

3.1. Local Structure Estimation

The structure tensor is also known as the second moment ma-
trix and it is a popular tool in image processing and computer
vision. A systematic treatment can be found in [BBL�06].

3.1.1. Structure Tensor Calculation

The calculation of the structure tensor requires approxima-
tions of the partial derivatives. Popular choices for calculating
these approximations are Gaussian derivatives and the So-
bel filter. Motivated by the results in [WS02], we use the
rotational symmetric derivative filter proposed in [JSK99]

Dx D
1

2

0@ p1 0 �p1
1 � 2p1 0 2p1 � 1

p1 0 �p1

1A ; Dy D D
T
x ;

with p1 D 0:183. Let � � Z2 and let f W � �! R3 denote
the input image. Then, approximations of the partial deriva-
tives in x- and y-direction are given by convolution with the
corresponding filter stencils:

fx D Dx ? f fy D Dy ? f

The structure tensor is now defined by

S D

�
hfx ; fxi hfx ; fyi

hfx ; fyi hfy ; fyi

�
DW

�
E F

F G

�
;

where h; i denotes the scalar product. This is a positive
semidefinite symmetric matrix and the induced quadratic
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(a) No smoothing (b) Relaxation
(�r D 0:002)

(c) Gaussian smoothing
(�d D 1)

Figure 3: Comparison of different smoothing approaches
for the structure tensor (N D 10).

form measures the squared rate of change of f . By calculat-
ing the major and minor eigenvalues

�1;2 D
E CG ˙

p
.E �G/2 C 4F 2

2

we can find the directions of maximum and minimum change.
Those are given by the corresponding eigenvectors:

� D

�
F

�1 �E

�
and � D

�
�1 �E

�F

�
In the following, we will assume the eigenvectors � and � to
be normalized. The major eigenvector � is equivalent to the
classical multi-channel image gradient [DZ86].

3.1.2. Structure Tensor Relaxation

In low-contrast regions, the signal-to-noise ratio is high and
the gradient information is not reliable. Accordingly, the
estimated orientation is almost random. Therefore, we replace
structure tensors with low gradient magnitude using basic
inpainting. Let

@� D
n
x 2 �

ˇ̌ q
E.x/2 CG.x/2 C 2F.x/2 > �r

o
be the set of points whose structure tensors have a gradient
magnitude greater than a threshold �r . We are looking for a
smooth function that interpolates the values of the boundary
@�. Such a function is given by the membrane that mini-
mizes:

argmin
s

Z
�
jrsj2 with sj@� D S j@�

This problem is known to be equivalent to solving Laplace’s
equation with a corresponding Dirichlet boundary condition.
A solution can be found, iteratively, by a series of Jacobi
relaxation steps. Let s0i;j denote the structure tensor at .i; j /,
then a relaxation step is given by:

skC1i;j D

8̂<̂
:
ski;j if .i; j / 2 @�

sk
iC1;jCski�1;jCski;jC1Cski;j�1

4 otherwise

Since the computation involves a convex combination, the re-
sult is a positive semidefinite matrix and, thus, is well defined.

Typically, a large number of iterations are required. In our im-
plementation, we use a fast multigrid approach [BHM00], but
performing the relaxation for every computation of the struc-
ture tensor is, nevertheless, expensive. Therefore, we perform
the relaxation only for the first computation of the structure
tensor. All subsequent computations use the structure tensor
of the previous computation for points in @�.

3.1.3. Structure Tensor Smoothing

The vector fields, that are defined by the eigenvectors of the
structure tensor, are not smooth and not suitable for guid-
ing the adaptive smoothing and sharpening. This is demon-
strated in Figure 3(a). Furthermore, the smoothing achieved
by the relaxation described above is not sufficient to create
a smooth look (Figure 3(b)). A possible approach would be
to smooth the image prior to derivative computation, thereby
using Gaussian derivatives. A better approach is to apply
smoothing directly to the structure tensor. Smoothing the
structure tensor is more stable, since it corresponds to solving
a weighted least square problem instead of taking a weighted
average. Figure 3(c) shows the effect of smoothing the struc-
ture tensor with a Gaussian filter. Best results are achieved
by combining relaxation with Gaussian smoothing as can be
seen in Figure 1(d).

3.2. Adaptive Smoothing

To simplify the image, we perform line integral convolu-
tion [CL93] along the stream lines defined by the minor
eigenvector field of the smoothed structure tensor. In contrast
to the isophote curves of the image, the stream lines defined
by the smoothed structure tensor are much smoother. The
effect of this is that smoothing along the stream lines also re-
sults in a regularization of the geometry of the isophote curves.
To achieve high-quality results, we perform the stream line
integration using the second-order Runge-Kutta method. For
pedagogical reasons, the simpler first-order Euler integration
is also discussed.

3.2.1. Integration Scale

Controlling the amount of smoothing is important, since too
much smoothing may destroy important image features. To
adaptively control the amount of smoothing we use the fol-
lowing popular anisotropy measure [FG87], which is based
on the eigenvalues of the structure tensor:

A D
�1 � �2

�1 C �2
D

p
.E �G/2 C 4F 2

E CG

(a) High curvature (b) Medium curvature (c) Low curvature

Figure 4: Stream lines for different local curvature.

© 2011 The Author(s)
Journal compilation © 2011 The Eurographics Association and Blackwell Publishing Ltd.



J. E. Kyprianidis & H. Kang / Image and Video Abstraction by Coherence-Enhancing Filtering

The anisotropy A ranges from 0 to 1, where 0 corresponds
to isotropic and 1 corresponds to entirely anisotropic regions.
The filter weights along the stream line are defined by a one-
dimensional Gaussian function GQ�s with standard deviation

z�s D
1
4�s .1C A/

2 :

The global parameter �s allows us to fine tune the smoothing.
For all our examples, we use �s D 6. The adapted parameter
z�s will lie in the range �s=4 � z�s � �s . In regions of
high curvature, the anisotropy will be low and, therefore, �s
small. In regions of low curvature, �s will be large and result
in an enhancement and regularization of directional image
features (Figure 4).

3.2.2. Euler Integration

In order to perform line integral convolution, the stream
line through the point to smooth must be found. A straight-
forward approach is to use the Euler integration method (Fig-
ure 5). Special attention needs to be paid to the sign of the
minor eigenvector. The structure tensor defines only orienta-
tion, but no particular direction. This is due to the quadratic
nature of the structure tensor. Therefore, the sign of the minor
eigenvector is chosen, depending upon the direction of the
previous step:

t˙k .x/ D

(
˙�.x/ if k D 0

sign
˝
t˙
k�1

; �.x/
˛
� �.x/ otherwise

Let x˙0 D x0 denote the current point, then for k � 0 a step
of the Euler method is given by:

x˙kC1 D x
˙
k C t

˙
k .xk/

If l denotes the cut-off of the discretized Gaussian, for
example l D d2 Q�se, then line integral convolution is defined
as:

1

�

�
GQ�s .0/f .x0/C

lX
kD1

GQ�s .k/
�
f .xC

k
/C f .x�k /

��

Here, � D
Pl
kD�l GQ�s .k/ denotes the corresponding nor-

malization factor and f denotes the image.

3.2.3. Second-Order Integration

Instead of using the Euler integration method, we perform
line integral convolution using the more precise second-order
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Figure 5: Integration of the minor eigenvector field using
Euler integration.

(a) Nearest-neighbor Euler (b) Bilinear Runge-Kutta

(c) Nearest-neighbor
Euler

(d) Nearest-neighbor
Runge-Kutta

(e) Bilinear
Runge-Kutta

Figure 6: Comparison of Euler and second-order Runge-
Kutta structure tensor integration.

Runge-Kutta method. A step of the second-order Runge-
Kutta method is given by:

x˙kC1 D x
˙
k C t

˙
k

�
x˙k C

1
2 t
˙
k .xk/

�
In Figure 6, a comparison with the Euler integration

method is shown. Since we use a large standard deviation, the
stream lines used for convolution are very long. Therefore,
accuracy of the integration method is very important. The
Euler integration method smoothes pixels lying on adjacent
isophote curves of the image (Figure 6(a)). This corresponds
to smoothing in the direction of the major eigenvector. By
contrast, the second-order Runge-Kutta method traces the
stream line at a higher accuracy and does not blur across
edges (Figure 6(b)).

The second-order Runge-Kutta method requires values of
the minor eigenvector for arbitrary positions. One option is
to calculate these in one pass and then use nearest-neighbor
sampling in a second pass. Bilinear interpolation of the eigen-
vectors is complicated, since opposite vectors may cancel
out. A better approach is to sample the structure tensor di-
rectly using bilinear interpolation. While this will produce a
continuous vector field, it is more expensive since the minor
eigenvector has to be computed for every sample. As can be
seen in Figure 6(e), second-order Runge-Kutta integration
with bilinear sampling of the structure tensor gives the best
results and is used in our approach.

3.3. Sharpening

The adaptive smoothing is very aggressive. As can be seen
in Figure 8, the overall shape of the image features is well
preserved, but transitions between color regions are smooth.
In order to obtain sharp transitions at edges, we perform
deblurring by shock filtering [OR90].
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(a) Original image (b) Coherence-enhancing
shock filter [Wei03]

(c) Proposed method with
coherence-enhancing

shock filter

(d) Original image (e) Proposed method with
coherence-enhancing

shock filter

(f) Proposed method with
gradient-directed

shock filter

(g) �i D 0, �g D 1 (h) �i D 0, �g D 2 (i) �i D 0, �g D 4 (j) �i D 1, �g D 1 (k) �i D 2, �g D 1 (l) �i D 4, �g D 1
Figure 7: Top row shows comparison of coherence-enhancing shock filter (20 iterations, � D 5, � D 3, � D 0:4) and proposed
method (N D 10). Bottom row shows additional combinations of isotropic and gradient directed smoothing parameters for the
proposed method.

3.3.1. PDE-based Shock Filter

Let f W R2 �! R denote a grayscale image, then the classi-
cal shock filter evolution equation is given by

ut D � sign.�u/jruj ;

with initial condition u.x; 0/ D f .x/. In the influence zone
of a maximum, the Laplacian �u is negative and, therefore,
a dilation is performed. In the influence zone of a minimum,
the Laplacian �u is positive, which results in an erosion.
This sharpens the edges at the zero-crossings of �u. The
Laplacian is very sensitive to noise and small detail. Alvarez
and Mazorra [AM94], therefore, replace the Laplacian with a
Laplacian of Gaussian (LoG).

A further modification is the coherence-enhancing shock
filter by Weickert [Wei03]. The sign of the Laplacian is re-
placed by the sign of the second derivative in the direction of
the major eigenvector of the smoothed structure tensor:

ut D � sign.v��/jruj

Here, v D G� ?u denotes a smoothed version of the evolving
image and � is the major eigenvector derived from the struc-
ture tensor. In Figure 7(b) the coherence-enhancing shock
filter applied to the popular mandrill image is shown. Clearly
noticeable is the typical high-contrast of the output. Fig-
ure 7(c) shows the output of the proposed method, where
the gradient-directed shock filter has been replaced by the
coherence-enhancing shock filter. The color contrast is much
more balanced and color regions have a consistent diffuse

color variation. Weickert’s shock filter achieves excellent re-
sults in combination with the proposed adaptive smoothing,
but one limitation is its performance. The filter is typically
implemented using the explicit Osher-Sethian [OS88] up-
wind scheme. In order to guarantee stability, the time step
size has to be chosen � 0:5 and, therefore, multiple itera-
tions have to be performed. We use a time step size of 0:4
and three iterations. For each iteration, first and second order
derivatives, and the smoothed structure tensor, have to be
calculated. Another limitation is shown in Figure 7(e). We-
ickert’s shock filter will introduce shocks in almost smooth
regions, resulting in maze-like artifacts.

3.3.2. Gradient-directed Shock Filter

As shown by Guichard and Morel [GM03], a shock filter can
be approximated by either a minimum or a maximum filter
that is chosen depending upon the sign of an associated edge
detector. Inspired by the flow-based difference of Gaussians

(a) Original image (b) 5 iterations (c) 10 iterations

Figure 8: Several iterations of the flow-guided smoothing
without shock filtering.
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filter [KLC07], and its separable implementation [KD08], we
calculate the sign using a one-dimensional (scale-normalized)
Laplacian of Gaussian (LoG)

�2gG
00
�g
.t/ D �2g

d2G�g .t/

dt2
D
x2 � �2g
p
2��3g

exp
�
�

t2

2�2g

�
in the direction of the minor eigenvector. The parameter �g
controls the size of the LoG, that is the resulting line thickness.
To provide additional artistic control, we introduce a second
smoothing parameter �i that performs isotropic smoothing.
Let L be the input image converted to grayscale and let v D
G�i ? L, then

z.x0/ D �
2
g

Z
G00�g .t/ v

�
x0 C t �.x0/

�
dt

defines the convolution with a one-dimensional LoG in the
direction of the major eigenvector. In our implementation, we
use a constant step size that has a unit size, along either the x
or the y axis, to evaluate the integral. Sampling is performed
using bilinear interpolation. This effectively results in linear
interpolation of two neighboring pixels, due to the unit step
size [KD08], and allows efficient implementation on GPUs
using texturing hardware. Let x0 denote the current point,
then the gradient-directed shock filter is defined as:8̂<̂

:
minx2ƒr .x0/ f .x/ if z.x0/ > C�s
maxx2ƒr .x0/ f .x/ if z.x0/ < ��s
f .x0/ otherwise

Here, f denotes the input image. Determination of the mini-
mum and maximum is performed based on the corresponding
gray values. The filter neighborhood ƒr with radius r is
defined by

ƒr .x0/ D
˚
x 2 �

ˇ̌
9� 2 Œ�r; r� W x D x0 C � �.x0/

	
and corresponds to all pixels, with a distance less than r
that intersect the line defined by the major eigenvector. For
the examples, we typically use r D 2. The parameter �s
controls the sensitivity to noise and is typically set to �s 2
Œ0; 0:01�. Since a scale-normalized LoG is used, �s does
not depend upon �g . The threshold effectively prevents the
creation of shocks in almost smooth regions, as can be seen
in Figure 7(f).

The quality of the output is comparable to that of the
coherence-enhancing shock filter, but computationally the
gradient-directed shock filter is much more efficient. It only
requires the smoothed structure tensor and the input image
converted to grayscale. The directional LoG and minimum or
maximum filters can be implemented in a single pass. More-
over, the gradient-directed shock filter provides finer artistic
control. The parameter �g restricts smoothing to the major
eigenvector direction. This is especially useful for preserving
small image features. To achieve a stronger abstraction, the
isotropic smoothing parameter �i is useful. In our examples,
we typically use �g D 1:5 and �i D 0. Figures 7(g)-(l) show
how the abstraction can be controlled using �g and �i .

(a) Original image (b) [KL08] (c) Proposed method

Figure 9: In contrast to shape-simplifying image abstraction,
the proposed approach does not require manual masking to
protect small image features such as eyes.

3.3.3. Edge Smoothing

The shock filter creates very sharp transitions at region bound-
aries. To anti-alias the region boundaries, we apply the adap-
tive smoothing with a small standard deviation �a 2 Œ1; 1:5�
as a final pass. In this case no adaption of the standard devi-
ation is performed. We also do not recompute the structure
tensor. Instead, we reuse the structure tensor that has been
computed for the shock filter.

4. Implementation

We have implemented the proposed algorithm using C++ and
CUDA. The implementation does not make use of special
features of CUDA. Instead, we use pitch linear memory and
textures. Therefore, similar results should be achievable using
shading languages, such as GLSL, Cg or HLSL. Using an
NVIDIA GTX 480 graphics card, processing an image with
resolution 512 � 512 takes approximately 11 milliseconds
for two iteration. This corresponds to an abstraction effect on
the level of the anisotropic Kuwahara filter. Image content
at HD 720p (1280 � 720) resolution takes approximately 31
milliseconds to process for two iterations. Hence, content
at HD 720p resolution can be processed in real-time with
more than 30 frames per second. For comparison, we have
created a CUDA implementation of the anisotropic Kuwahara
filter based on [KKD10]. Processing an image with resolution
512� 512 takes 32 milliseconds. With resolution 1280� 720
it takes 121 milliseconds. Our approach, thus, performs much
better even though many computations are performed.

5. Results

Figure 9 demonstrates the ability of our approach to preserve
singular features like eyes. As shown in Figure 9(b), con-
strained mean curvature flow does not preserve curvature
and contracts circular image features to points. By contrast,
our adaptive smoothing preserves the curvature of image
features and, therefore, does not require manual assistance,
such as masking, to protect important image features. In ad-
dition to preserving curvature, the adaptive smoothing effec-
tively enhances small highly anisotropic image features. This
is demonstrated in Figure 10. By contrast, the anisotropic
Kuwahara filter either erodes or blurs thin image features.

Further examples are shown in Figure 11. In contrast to
the bilateral filter (Figure 11(d)), our approach creates a con-
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(a) Original image (b) Anisotropic Kuwahara filter [KKD09] (c) Proposed method

Figure 10: In contrast to other techniques, our approach emphasizes and enhances highly anisotropic image features.

(a) Original image (b) Anisotropic Kuwahara filter [KKD09] (c) Shape-simplifying image abstraction [KL08]

(d) Bilateral filter (4 iterations) [TM98] (e) Proposed method (N D 2) (f) Proposed method (N D 10)

Figure 11: Comparison with anisotropic Kuwahara filter, shape-simplifying image abstraction, and bilateral filter.

sistent abstraction across the entire image. The anisotropic
Kuwahara filter (Figure 11(b)) also creates a consistent ab-
straction, but the result looks somewhat washed out because
of missing contrast. For images with strong directional fea-
tures, shape-simplifying image abstraction typically achieves
very good results (Figure 11(c)). Our approach also performs
excellently for these types of images and, by increasing the
number of iterations, a strong abstraction effect can be ob-
tained as well (Figure 11(f)). Figures 11(e) and 11(f) demon-
strate the feasibility of our approach to control the strength
of abstraction by changing the number of iterations. This is
also claimed for shape-simplifying image abstraction, but
only given from a certain number of iterations. For a small
number of iterations, shape-simplifying image abstraction
typically shows artifacts, which makes a light abstraction ef-
fect impossible. The anisotropic Kuwahara filter is limited to
a light abstraction effect, since the amount of abstraction de-
pends upon the filter radius. Using larger filter radii will also
increase the amount of blurring and may destroy important
image features.

Figure 12 demonstrates the stability of our approach. Here,
different methods are applied to an image that has been arti-
ficially corrupted with Gaussian and impulse noise. Shape-

simplifying image abstraction delivers the least satisfactory
performance. Our approach performs decently, but is not able
to remove the impulse noise. This is not surprising. Both
filters are based on anisotropic smoothing, which will remove
the Gaussian noise but also blur the impulse noise. Both
techniques also use shock filtering that enhances noise. The
anisotropic Kuwahara filter successfully restores the image,
but the region boundaries are distorted. When the number
of iterations is increased, our approach performs well. It
converges to a nearly steady state that looks a little odd (Fig-
ure 12(h)), but it does not blow up like shape-simplifying
image abstraction (Figure 12(g)).

In Figure 13, our approach is compared with techniques
based on gradient domain image processing. In contrast to
these techniques, our approach also performs a regularization
of the image that results in smooth color boundaries. However,
regions of the same color are not as smooth as the ones created
by GradientShop. This is because the adaptive smoothing
only performs smoothing in the tangential direction. On the
other hand, this retains important visual detail, as for example,
the specular reflection on the nose. Also note that, unlike our
technique, both these techniques currently do not perform in
real-time.
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(a) Original image (b) Proposed method
applied to original image

(c) Image corrupted with noise (d) Proposed method applied
to noisy image

(e) [KKD09] applied to noisy image (f) [KL08] applied to noisy image (g) Limit case: [KL08]
with 50 CMCF iterations

(h) Limit case: proposed
method withN D 50

Figure 12: (a)-(f): Anisotropic Kuwahara filter, shape-simplifying image abstraction, and proposed method applied to an image
corrupted with 2% Gaussian noise and 5% impulse noise. (g)-(h): Limit cases.

An image that is difficult to handle for our approach is
shown in Figure 14(a). Here, two prevailing orientations ex-
ist. One of the water, which is almost horizontal, and one
of the contour of the rock. Since the gradient magnitude is
high at the rock’s contour, the orientation of the contour will
dominate in a small neighborhood of the contour, during the
structure tensor smoothing. Therefore, the adaptive smooth-
ing will perform smoothing on both sides of the contour. This
results in a halo-like effect, as shown in Figure 14(b). In Fig-
ure 14(c), an image with high contrast texture is shown. If
processed by our method with typical parameters, the texture
will be emphasized. To obtain the result in Figure 14(d), we
had to use a large number of iterations and �i D 5 to prevent
the shock filter from regarding the texture as edges. However,
flow-like structures are still clearly observable and are, again,
due to the directional smoothing.

Our approach can also be applied to video using per-frame
filtering without extra processing. Very good temporal coher-
ence is provided for 1-3 iterations. Applying more iterations
typically results in temporal artifacts becoming noticeable.
However, compared to shape-simplifying image abstraction
or segmentation based approaches these are rather minor. We
currently investigate ways to stabilize the method for larger
number of iterations as part of our future work.

6. Conclusion

We have presented an automatic technique for image and
video abstraction, based on adaptively controlled flow-guided

smoothing and directional shock filtering. Our approach ag-
gressively smoothes out unimportant regions, but protects
important features by enhancing contrast and directional co-
herence, providing a good balance between content abstrac-
tion and feature enhancement consistently across the image.
For abstraction at the level of the anisotropic Kuwahara filter,
the GPU implementation of our method processes video at
HD resolution in real-time and creates temporally coherent
output without further processing.
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